skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zirkelbach, Stetson"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The separability of clusters is one of the most desired properties in clustering. There is a wide range of settings in which different clusterings of the same data set appear. We are interested in applications for which there is a need for an explicit, gradual transition of one separable clustering into another one. This transition should be a sequence of simple, natural steps that upholds separability of the clusters throughout. We design an algorithm for such a transition. We exploit the intimate connection of separability and linear programming over bounded-shape partition and transportation polytopes: separable clusterings lie on the boundary of partition polytopes and form a subset of the vertices of the corresponding transportation polytopes, and circuits of both polytopes are readily interpreted as sequential or cyclical exchanges of items between clusters. This allows for a natural approach to achieve the desired transition through a combination of two walks: an edge walk between two so-called radial clusterings in a transportation polytope, computed through an adaptation of classical tools of sensitivity analysis and parametric programming, and a walk from a separable clustering to a corresponding radial clustering, computed through a tailored, iterative routine updating cluster sizes and reoptimizing the cluster assignment of items. Funding: Borgwardt gratefully acknowledges support of this work through National Science Foundation [Grant 2006183] Circuit Walks in Optimization, Algorithmic Foundations, Division of Computing and Communication Foundations; through Air Force Office of Scientific Research [Grant FA9550-21-1-0233] The Hirsch Conjecture for Totally-Unimodular Polyhedra; and through Simons Collaboration [Grant 524210] Polyhedral Theory in Data Analytics. Happach has been supported by the Alexander von Humboldt Foundation with funds from the German Federal Ministry of Education and Research. 
    more » « less